Kriteks.ru

Как работает газовая турбина

Принцип действия газотурбинных установок (ГТУ)

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо — газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля — термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля — в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1—2 Изоэнтропическое сжатие.
  • 2—3 Изобарический подвод теплоты.
  • 3—4 Изоэнтропическое расширение.
  • 4—1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1—2p—3—4p—1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1—2—3—4—1)
Реального (1—2p—3—4p—1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 — степень повышения давления в процессе изоэнтропийного сжатия (1—2);
  • k — показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 – температура холодильника;
  • T2 – температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина — с частотой около 100000 об/мин.

Конструкция газовых турбин

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах – газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними – и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Читать еще:  Как правильно менять втулки стабилизатора

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

23 августа 2017

Поделитесь ссылкой со своими друзьями:

Информация о газовых турбинах

Принцип работы газовой турбины

Как и дизельный или бензиновый двигатель, газовая турбина – это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.

Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.

Особенности газовых турбин

Типы газовых турбин по конструкции и назначению

Самый основной тип газовой турбины – создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.

У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.

Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например – как привод генератора.

В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т.п.

Что такое газовая турбина серии GREEN?

Принцип, которому Kawasaki следует в газотурбинном бизнесе, начиная с разработки в 1972 году нашей первой ГТУ, позволил нам предлагать клиентам все более совершенное оборудование, т.е., более энергоэффективное и экологичное. Идеи, заложенные в наших продуктах, получили высокую оценку мирового рынка и позволили нам накопить референции на более, чем 10 000 турбин (на конец марта 2014 года) в составе резервных генераторов и когенерационных систем.
Газовые турбины Kawasaki всегда имели большой успех, и мы, показывая еще большую нашу приверженность этому принципу, дали им новое название “Газовые турбины GREEN”.

Проект K: Создание газовой турбины с самым высоким КПД в мире

Внутри К: Подразделение газовых турбин, Акаси / завод Seishin

Контакты

Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.

Наша продукция

Powering your potential. Компания Kawasaki стремится предоставлять клиентам уникальные бизнес-решения с использованием наших инновационных технологий для удовлетворения разнообразных общественных потребностей во всем мире. Kawasaki «работает как единое целое на благо планеты».

Copyright © 2018 Kawasaki Heavy Industries, Ltd. Все права защищены.

Газотурбинная электростанция (ГТЭС)

Довольно часто возникают ситуации, когда некоторые промышленные и хозяйственные объекты вынужденно располагаются на больших расстояниях от основных электрических сетей. В таких случаях питание подается с помощью передвижных и стационарных установок. В этом списке широко используется газотурбинная электростанция, представляющая собой высокотехнологичную современную конструкцию, обладающую высоким коэффициентом полезного действия. Установки этого типа успешно генерируют электрическую и тепловую энергию, обеспечивая нормальное функционирование закрепленных за ними объектов.

Типовая схема агрегата

Стандартная газотурбинная установка представляет собой тепловую машину, где используется теплоноситель, находящийся в газообразном состоянии, нагретый до высокой температуры. В результате определенных процессов, которые будут рассмотрены ниже, его энергия превращается в механическую.

Конструкция такой электростанции состоит из следующих частей: компрессора, камеры сгорания и самой газовой турбины. Взаимодействие этих компонентов и управление ими в процессе работы обеспечивается специальными вспомогательными системами, входящими в конструкцию установки. Газотурбинная установка и электрический генератор образуют в совокупности газотурбинный агрегат. Мощностью от нескольких десятков киловатт до показателей, измеряемых в мегаваттах. Электростанция, в зависимости от целевого назначения и количества потребителей, имеет одну или несколько газотурбинных установок.

Сама газотурбинная установка разделяется на две части, размещенные в общем корпусе: газогенератор и силовая турбина. Газогенератор состоит из камеры сгорания и турбокомпрессора. Именно здесь создается газовый поток с высокой температурой, оказывающий воздействие на лопатки турбины. Выхлопные газы утилизируются в теплообменнике, и одновременно производят нагрев паровых или водогрейных котлов. Газотурбинные установки могут работать на жидком или газообразном топливе. В стандартном рабочем режиме используется газ, а в критических ситуациях установка автоматически переходит на жидкое топливо.

В нормальных условиях ГТЭС осуществляет комбинированное производство электричества и тепловой энергии. Как правило, они работают в базовом режиме, но при необходимости успешно перекрывают пиковые нагрузки. Вырабатываемое тепло, в количественном отношении существенно выше, чем производимое обычными поршневыми устройствами.

Как работает газотурбинная установка

По сравнению с переносными бензиновыми или дизельными электростанциями, газотурбинные установки имеют более сложную конструкцию и принципиальную схему. Тем не менее, основная задача у тех и других агрегатов совершенно одинаковая: преобразование исходного топлива в электрическую энергию.

Преимуществом газотурбинных установок является возможность дополнительно вырабатывать тепло.

Работа агрегатов этого типа происходит в следующем алгоритме:

  • Газ, поступающий в качестве топлива, вначале воспламеняется, а затем переходит в стадию горения. Образуется газовый поток с высокой температурой, представляющий собой тепловую энергию.
  • Попадая в турбину, раскаленный газ начинает вращать вал, создавая тем самым механическую энергию.
  • С вала турбины вращательный момент передается на ротор генератора, который начинает вырабатывать уже электрическую энергию. Далее она уходит к трансформатору, и пройдя через него, поступает к потребителям.
Читать еще:  Как подзаработать на машине

Газ в турбинный двигатель поступает непрерывным потоком. Вначале воздух сжимается компрессором, смешивается с топливом и в таком виде попадает в камеру сгорания. Смесь воспламеняется, а высокое давление обеспечивает большой выход энергии в виде продуктов горения. Современные модификации агрегатов могут работать не только на газе. В качестве горючего используется дизельное топливо, керосин, нефть. Эти установки отличает высокая производительность и надежность в работе. При поломке какого-либо элемента, ремонт легко производится на месте, что существенно снижает эксплуатационные расходы.

Газотурбинные установки малой мощности отличаются низким расходом смазочных материалов, им не требуется водяное охлаждение. При соблюдении рекомендация завода-изготовителя, они могут безопасно работать в течение длительного времени, без аварий и поломок.

Основные виды газотурбинных агрегатов

Газотурбинные электростанции нашли широкое применения в самых разных сферах. Они снабжают электроэнергией крупные объекты промышленного назначения, удаленные здания и сооружения. В случае необходимости, газотурбинная электростанция в состоянии обеспечить электричеством целые населенные пункты. Агрегаты малой мощности нередко используются в частном секторе и на сельскохозяйственных объектах.

Основным критерием классификации электростанций являются их размеры, в соответствии с которыми выбирается и место их использования:

  • Стационарные установки и сопутствующее оборудование. Монтируются на капитальных неподвижных фундаментах. На них устанавливаются самые мощные турбины и электрические генераторы.
  • Передвижные или мобильные установки. Также обладают высокой мощностью, но при этом могут перемещаться с места на место. Работают не только на газе, но и на жидком топливе.
  • Мини-установки или микротурбины. Вырабатывают электрическую и тепловую энергию, но при этом отличаются компактными размерами и низким уровнем шума во время работы. Последнее качество дает возможность размещать такие агрегаты в непосредственной близости от частных домов. Они могут работать в режиме когенерации, вырабатывая воду и пар для систем отопления, и в режиме тригенерации, преимущественно, в вентиляционных системах.

Преимущества и недостатки ГТЭС

К несомненным плюсам можно отнести следующие:

  • Максимально простое устройство. В отличие от паровой установки, котел не нужен. В связи с этим отсутствуют градирни, паропроводы и другие приспособления. Существенно снижена масса и материалоемкость таких установок.
  • Вода расходуется в минимальном количестве, охлаждая смазку в подшипниках.
  • Быстрый монтаж и ввод в эксплуатацию. Мощный турбогенератор запускается в работу в течение 15-20 минут, а паровая турбина – в течение нескольких часов.
  • Возможность дополнительно производить тепловую энергию, что способствует более быстрой окупаемости установки.
  • Токсичные выбросы отсутствуют, вибрация незначительная. Можно без ограничений использовать в населенных пунктах.
  • Доступное газовое топливо.
  • Использование в труднодоступных районах, где отсутствует центральное электроснабжение.

Тем не менее, нельзя сбрасывать со счетов и определенные минусы, характерные для данного типа установок:

  • Для достижения полезной мощности изначально требуется высокая температура газа – свыше 550 градусов. В связи с этим, для изготовления турбины используются жаростойкие материалы. Требуется система охлаждения мест, подверженных сильному нагреву.
  • Фактическая полезная мощность довольно низкая, поскольку ее значительная часть расходуется на привод компрессорной установки.
  • Твердым видам топлива необходима предварительная обработка.
  • Большие турбины отличаются высоким уровнем шума.

Информация о газовых турбинах

Принцип работы газовой турбины

Как и дизельный или бензиновый двигатель, газовая турбина – это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.

Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.

Особенности газовых турбин

Типы газовых турбин по конструкции и назначению

Самый основной тип газовой турбины – создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.

У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.

Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например – как привод генератора.

В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т.п.

Что такое газовая турбина серии GREEN?

Принцип, которому Kawasaki следует в газотурбинном бизнесе, начиная с разработки в 1972 году нашей первой ГТУ, позволил нам предлагать клиентам все более совершенное оборудование, т.е., более энергоэффективное и экологичное. Идеи, заложенные в наших продуктах, получили высокую оценку мирового рынка и позволили нам накопить референции на более, чем 10 000 турбин (на конец марта 2014 года) в составе резервных генераторов и когенерационных систем.
Газовые турбины Kawasaki всегда имели большой успех, и мы, показывая еще большую нашу приверженность этому принципу, дали им новое название “Газовые турбины GREEN”.

Проект K: Создание газовой турбины с самым высоким КПД в мире

Внутри К: Подразделение газовых турбин, Акаси / завод Seishin

Контакты

Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.

Наша продукция

Powering your potential. Компания Kawasaki стремится предоставлять клиентам уникальные бизнес-решения с использованием наших инновационных технологий для удовлетворения разнообразных общественных потребностей во всем мире. Kawasaki «работает как единое целое на благо планеты».

Copyright © 2018 Kawasaki Heavy Industries, Ltd. Все права защищены.

Газотурбинный двигатель: Устройство и принцип работы

Сегодня среднестатистический обыватель знаком с устройством и принципом работы мотора внутреннего сгорания, а вот газотурбинный двигатель, приводит пользователя в тупик. Тем не менее принцип действия турбинного агрегата намного проще поршневого мотора. Из-за особенностей эксплуатации, первый нашёл применение в авиации, второй установлен на 90% штатных автомобилей.

По классификации, силовая установка относится к тепловым устройствам, поскольку трансформирует выделившийся напор от горения в работу механики. В противовес агрегату с поршнями, проходящее преобразование течёт в непрерывной газовой струе, а это влияет на конструкцию и эксплуатацию. Попытки установить газотурбинный мотор на машины предпринимаются постоянно, однако массового развития идея не получила.

Отличительные черты

Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение – авиация.

Читать еще:  Как снять троса кпп ларгус

Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид – керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.

Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.

В поршневых установках описанные действия происходят в одной точке – камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.

Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:

  • Подведение горючего и образование смеси.

За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.

  • Энергетическое рабочее преобразование.

Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.

Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.

Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.

Схема включения в процесс турбины:

Газотурбинный двигатель принцип работы

Смысл двигателестроения, достижение повышенного значения полезного коэффициента. В нашем случае, требуемые результаты, напрямую связаны с горением смеси и при этом обширном выделении тепла. Это не так просто, как кажется, основополагающее препятствие – материал изделия, которому сложно выдержать температуру и напор. По этой причине, проведено много расчётов, направленных на снятие тепла с турбины и применение в ином русле. Усилия не пропали даром, повторное использование энергии стало возможным и нагревало сжатые воздушные массы перед горением, а не терялось зря. Без таких устройств «теплообменников» достичь значений полезного действия было бы не возможно.

Для достижения повышенных показателей мощи, турбинные лопатки раскручивают до как можно больших показателей. Скорость вращения обусловлена напором выходящих газов. Чем меньше размер установки, тем выше частота оборотов, поскольку только так достигается стабильность работы.

Газотурбинный двигатель Т 80:

Устройство газотурбинного двигателя

Если сравнивать газотурбинный двигатель с мотором, который применяют на автомобиле, устройство первого проще. Агрегат включает камеру, где происходит сгорание; присутствуют свечи, поджигающие заряд; форсунка, участвующая в смесеобразовании. На одном валу помещены турбинные колёса и нагнетатель. Присутствуют: редуктор понижения, устройство обмена теплом, трубки, коллектор впуска, сопло и концентратор.

Вращаясь на компрессорном валу, лопатки втягивают воздушную массу, используя коллектор впуска. Достигнув скорости вращения 0,5 км/с, нагнетатель затягивает воздух в концентратор. В конечной точке скоростной режим падает, однако сдавливание массы повышается. Далее воздушная масса перетекает в устройство температурного обмена для набора температуры и перехода в область горения. В пространство параллельно с воздушной массой постоянно поступает горючее, за это отвечают распылители. Перемешиваясь, масса и горючее образуют рабочую консистенцию, которая после приготовления воспламеняется свечой. Горение поднимает напор объёма, газы, вырываясь сквозь концентратор, сталкиваются с турбинными лопатками, двигая колесо. Импульс, создаваемый окружностью, передаётся посредством редуктора на движущий элемент, а газовый остаток перетекает в устройство обмена теплом, подогревая там сдавленные воздушные массы и выбрасываясь в среду окружения.

Газотурбинный мотор «ДР59Л»:

Минус установки, цена материала, способного выдержать температуру. Кроме того, чтобы исключить поломку, поступающий в агрегат воздух требует повышенной степени очистки. Несмотря на это, доработка и усовершенствование агрегата проводятся постоянно. Расширяется сфера применения, сегодня построена автомобильная, авиационная установка, и даже газотурбинный двигатель для кораблей.

«Минус» и «плюс» мотора

Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.

Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.

Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.

Главные преимущества мотора:

  • Пониженная степень загрязнения выхлопных газов;
  • Починка простая и лёгкая (не содержит расходных материалов);
  • Отсутствие вибрации;
  • Пониженный шум при эксплуатации агрегата;
  • Повышенные характеристики импульса;
  • Включение и отклик на педаль акселератора без задержек;
  • Повышено соотношение мощности и веса.

Танковая установка «ГТД-1500»:

Виды газотурбинных двигателей

Конструктивно газотурбинные силовые установки делят на четыре типа

Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.

Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.

Турбовентиляторный двигатель «Д-27»:

Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.

Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.

Газотурбинный »:

Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.

Ссылка на основную публикацию
Adblock
detector